\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 4TE02emt1
Course Name: B.Tech
Semester:II

Subject Name: Engineering Mathematics-II
Date: 18/5/2015
Marks:70
Time:02:30 TO 05:30

Instructions:

1) Attempt all Questions in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

Q-1 (a) If $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & -1 & 3\end{array}\right]$ Then find the value of $\operatorname{det} A$.
(b) Solve: $x \frac{d x}{d y}+y=0$.
(c) Find order and degree of $\frac{d y}{d x}=\frac{x}{\frac{d y}{d x}}$
(d) Solve: $\int_{0}^{1} \int_{0}^{2} x y d x d y$.
(e) Evaluate using improper integrals $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x$.
(f) If $\bar{A}=x^{2} z \hat{i}-2 y^{3} z^{2} \hat{j}+x y^{2} z \hat{k}$, find $\nabla \cdot \bar{A}$ at point $(1,-1,1)$.
(g) Define: Symmetric matrix and Square matrix.

Attempt any four: (From Q-2 to Q-8)

Q-2 (a) Define: Exact differential equation and Solve $\left[(x+1) e^{x}-e^{y}\right] d x-x e^{y} d y=0, \quad y(1)=0$.
(b) Find the A^{-1} by determinant method $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 1\end{array}\right]$.
(c) Evaluate $\iint_{R} x y d y d x$ Where R is the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$.

Q-3 (a) Solve: $\frac{d y}{d x}+6 x^{2} y=\frac{e^{-2 x^{3}}}{x^{2}}$, where $y(1)=0$.
(b) Find the Eigenvalue and Eigenvector of the Matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$.
(c) Find the rank of following matrix by reduce to normal form $A=\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 3 & 4 & 0 & -1 \\ -1 & 0 & -2 & 7\end{array}\right]$.

Q-4 (a) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d A$, by changing the variables, where R is the region lying in the first quadrant and bounded by the hyperbolas $x^{2}-y^{2}=1, x^{2}-y^{2}=9, x y=2$ and $x y=4$.
(b) Verify Green's theorem for $\underset{C}{f}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ where C is the boundary of the region bounded by the parabola $y=x^{2}$ and line $y=x$.
(c) Evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ along the parabola $y^{2}=x$ between the points $(0,0)$ and $(1,1)$ where $\bar{F}=x^{2} \hat{i}+x y \hat{j}$

Q-5 (a) Verify Cayley Hamilton theorem for $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find the value of
$A^{5}+5 A^{4}-6 A^{3}+2 A^{2}-4 A+7 I$.
(b) Find curl curl \bar{A} if $\bar{A}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$ at the point $(1,0,2)$.
(c) Check the convergence of $\int_{4}^{\infty} \frac{3 x+5}{x^{4}+7} d x$

Q-6 (a) Find the Work done in moving a particular in the force field $\bar{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the curve $x^{2}=4 y$ and $3 x^{3}=8 z$ from $x=0$ to $x=2$.
(b) Express the matrix $A=\left[\begin{array}{ccc}1 & 5 & 7 \\ -1 & -2 & -4 \\ 8 & 2 & 13\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.

(c) Evaluate: $\int_{0}^{\frac{1}{2}} x^{3} \sqrt{1-4 x^{2}} d x$.

Q-7 (a) Solve: $\frac{d y}{d x}+\frac{1}{x} y=x^{2} y^{6}$
(b) Find the A^{-1} of the following matrix by Gauss-Jordan method where $A=\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$.
(c) Form the differential equation of $y=A e^{2 x}+B e^{3 x}$.

Q-8 (a) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$
(b) Find the value of μ which satisfy the equation of $A^{100} x=\mu x$, where

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \tag{04}\\
0 & -2 & -2 \\
1 & 1 & 0
\end{array}\right]
$$

(c) Evaluate: $\int_{-2 \pi}^{2 \pi} \sin ^{6} x d x$.

