Enrollment No:-____

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 4TE02EMT1 Course Name: B.Tech Semester:II Subject Name: Engineering Mathematics-II

Date: 18/5/2015 Marks:70 Time:02:30 TO 05:30

Instructions:

- 1) Attempt all Questions in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Q-1 (a)	If $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & -1 & 3 \end{bmatrix}$ Then find the value of det A . Solve: $x \frac{dx}{dx} + y = 0$	[02]
(b)	Solve: $x \frac{dy}{dy} = 0$.	[02]
(c)	Find order and degree of $\frac{dy}{dx} = \frac{x}{\frac{dy}{dx}}$	[02]
	$\frac{12}{12}$	[02]

(d) Solve:
$$\int_{0}^{1/2} xy \, dx dy$$
. [02]

(e) Evaluate using improper integrals
$$\int_{0}^{\infty} \frac{1}{1+x^2} dx$$
. [02]

(f) If
$$\overline{A} = x^2 z \hat{i} - 2y^3 z^2 \hat{j} + xy^2 z \hat{k}$$
, find $\nabla \cdot \overline{A}$ at point $(1, -1, 1)$. [02]

(g) Define: Symmetric matrix and Square matrix. [02]

Attempt any four: (From Q-2 to Q-8)

Q-2 (a) Define: Exact differential equation and Solve $\left[(x+1)e^x - e^y \right] dx - xe^y dy = 0$, y(1) = 0. [05]

- (b) Find the A^{-1} by determinant method $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$. [05]
- (c) Evaluate $\iint_R xy \, dy \, dx$ Where R is the positive quadrant of the circle $x^2 + y^2 = a^2$. [04]

Page 1 of 3

Q-3 (a) Solve:
$$\frac{dy}{dx} + 6x^2y = \frac{e^{-2x^3}}{x^2}$$
, where $y(1) = 0$. [05]

(b) Find the Eigenvalue and Eigenvector of the Matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. [05]

(c) Find the rank of following matrix by reduce to normal form A= $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 3 & 4 & 0 & -1 \\ -1 & 0 & -2 & 7 \end{bmatrix}$. [04]

- Q-4 (a) Evaluate $\iint_{R} (x^{2} + y^{2}) dA$, by changing the variables, where R is the region lying in the first quadrant and bounded by the hyperbolas $x^{2} y^{2} = 1$, $x^{2} y^{2} = 9$, xy = 2 [05] and xy = 4.
 - (b) Verify Green's theorem for $\iint_C (x^2 2xy) dx + (x^2y + 3) dy$ where *C* is the boundary of the region bounded by the parabola $y = x^2$ and line y = x. [05]

(c) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ along the parabola $y^{2} = x$ between the points (0,0) and (1,1) where $\overline{F} = x^{2}\hat{i} + xy\hat{j}$ [04]

Q-5 (a) Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence find the value of [05] $A^{5} + 5A^{4} - 6A^{3} + 2A^{2} - 4A + 7I$

(b) Find
$$\operatorname{curl}\operatorname{curl}\overline{A}$$
 if $\overline{A} = x^2 y\hat{i} - 2xz\hat{j} + 2yz\hat{k}$ at the point $(1,0,2)$. [05]

(c) Check the convergence of
$$\int_{4}^{\infty} \frac{3x+5}{x^4+7} dx$$
 [04]

Q-6 (a) Find the Work done in moving a particular in the force field $\overline{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ [05] along the curve $x^2 = 4y$ and $3x^3 = 8z$ from x = 0 to x = 2.

(b) Express the matrix $A = \begin{bmatrix} 1 & 5 & 7 \\ -1 & -2 & -4 \\ 8 & 2 & 13 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric [05]

matrix.

(c) Evaluate:
$$\int_{0}^{\frac{1}{2}} x^3 \sqrt{1-4x^2} dx$$
. [04]

Q-7 (a) Solve:
$$\frac{dy}{dx} + \frac{1}{x}y = x^2y^6$$
 [05]

- (b) Find the A^{-1} of the following matrix by Gauss-Jordan method where $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$. [05]
- (c) Form the differential equation of $y = Ae^{2x} + Be^{3x}$. [04]

Q-8 (a) Evaluate:
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dz dy dx$$
 [05]

(b) Find the value of μ which satisfy the equation of $A^{100}x = \mu x$, where

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -2 & -2 \\ 1 & 1 & 0 \end{bmatrix}$$
[05]

(c) Evaluate:
$$\int_{-2\pi}^{2\pi} \sin^6 x \, dx$$
. [04]

